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a b s t r a c t

In this work we investigate electron–impurity binding energy in GaN/HfO2 quantum wells. The calcu-
lation considers simultaneously all energy contributions caused by the dielectric mismatch: (i) image
self-energy (i.e., interaction between electron and its image charge), (ii) the direct Coulomb interaction
between the electron–impurity and (iii) the interactions among electron and impurity image charges.
The theoretical model account for the solution of the time-dependent Schrödinger equation and the
results shows how the magnitude of the electron–impurity binding energy depends on the position of
impurity in the well-barrier system. The role of the large dielectric constant in the barrier region is
exposed with the comparison of the results for GaN/HfO2 with those of a more typical GaN/AlN system,
for two different confinement regimes: narrow and wide quantum wells.

& Elsevier B.V. All rights reserved.
1. Introduction

When an impurity is introduced into a low dimensional
structure, such as quantum wells (QW), nano wires (NW) and
quantum dots (QD) the calculation of the electronic properties in
this structures becomes considerably more complex if compared
to that of a doped three-dimensional crystal [1–6]. This occurs
because of the restricted movement in the structure growth di-
rection, which is imposed by the potential due to band edges
discontinuities ΔE. First, the binding energy of the carrier-impurity
in the structure depends on the confinement potential ΔE, and
second, both the binding energy and wave function of the carrier
and impurity depends on the impurity position in the structure
growth direction. On the other hand, due to recent progress in
epitaxial crystal growth techniques, such as molecular beam epi-
taxy (MBE), research focusing on impurity and electronic states in
nano-structures has attracted great attention [7,8]. However, ef-
fects caused by image charges due to the dielectric mismatch at
the structure interface have been overlooked. Indeed, donor
binding energy can be significantly modified by additional con-
finement effects that image charges distribution produce [9,10].
Thus, recent research focusing on high-k dielectrics based QWs
and NWs reveals interesting results related to carrier confinement
[11–14]. We recently demonstrate that the interaction between
: þ55 85 33669450.
carriers and their image charge, induced by the dielectric mis-
match ε ε ε= = =( / 9.5/25 0.38)r GaN HfO2

, strongly modifies the elec-
tronic structure in GaN/HfO2 QWs (and NWs) and for wide QWs
(wide radii NWs) heavy holes are confined in interfacial regions,
similar to that observed in type-II heterostructures [13,14]. Such
interfacial confinement leads to drastic modifications on the
electronic properties of the QWs and NWs. Particularly, for NWs
under an applied magnetic field, where angular momentum
transitions occur in the ground state due to the Aharonov–Bohr
effect [14]. A decrease in the oscillator strength of electron–hole
pairs in ε < 1r QWs and NWs is also predicted for wide QW and
larger wire radii, which directly affects their recombination rates
[13,14].

In this work, we investigate electron–impurity binding energy
in GaN/HfO2 Qws. As for illustration we compared this results with
those of a more typical AlN/GaN system. The presence of a point
charge in a region where the dielectric constant is discontinuous
induces polarization charges at the QW interfaces, and this pro-
blem can be solved by the image charges method [15]. As shown
here, The electron energy, electron wave function and the elec-
tron–impurity binding energy can change significantly due to
additional confinement effects produced by the image charge
distribution. Our calculation considers simultaneously all energy
contributions caused by the dielectric mismatch: (i) image self-
energy (interaction between electron and its image charges), (ii)
the direct Coulomb interaction between electron and the actual
impurity, as well as (iii) the interactions among electron and im-
purity image charges. Moreover, from practical means, we also
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investigate stark effect and electron–impurity binding energy for
two different confinement regimes: narrow (5 nm) and wide
(10 nm) QWs. When compared to the effective Bohr's radius for
the GaN bulk ε= =⋆ ⁎a a m( / 2.65 nmB B eGaN ; where aB¼0.53 Å is the
Bohr's radius) narrow and wide QWs used in this work are twice
and four times the effective Bohr's radius, respectively. The bind-
ing energy of an electron bound to a hydrogenic impurity is ob-
tained as function of the impurity position, by solving a fully
three-dimensional time dependent Schrödinger equation using a
method with neither adjustable parameters nor restrictive basis
expansions as employed by almost all theoretical approaches in
the literature [16–18]. For simplicity, we address zinc blende GaN
instead of its wurtzite crystalline structure in order to avoid more
complicated polarizations effects observed in this phase [19].
Fig. 1. (Color online) (a) Energy potential ΔE z( )e e due to conduction band edge
discontinuity (red dashed line) and the potential Σ z( )e e due to self-energy correc-
tions (black solid line). (b) Total potential Σ= Δ + + −V r E z z V r( ) ( ) ( ) ( )e e e e e im in the z
direction (black solid line) and electron ground state wave function (blue dashed
line). (c) Coulomb potential −V r( )e m of electron–impurity interaction in 3D plot.
(d) Total potential V(r) in 3D plot.
2. Theoretical model

2.1. Time-dependent Schrödinger equation

The theoretical method used to calculate the binding energy of
an electron bound to a hydrogenic impurity is based on the
adiabatic approximation. The time-dependent Schrödinger equa-
tion [20–23] is consistent with the effective mass approach and
the envelope function formalism:

ψ ψ=∂
∂

i r t H r t? ( , ) ( , ), (1)t

and describes the quantized states of a single particle coupled to a
quantum well under the effect of impurity Coulomb potential and
potential due to image charges. The Hamiltonian H is given by

= +⁎H P
m r

P V r
1
2

1
( )

( ),
(2)

where = − ∇P i? is the kinetic energy operator and V(r) is the
potential energy operator. The initial solution Ψ r t( , ) given by the
method is
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The Hamiltonian of Eq. (2) does not depend on time, so the
integral in Eq. (3), solved in the range between t and + Δt t is given
by
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which is approximated by the expression:
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The error introduced in this expression, whenwe drop the term
ΔO t( )3 , results from the noncommutability of the kinetic and po-

tential operators. The potential operator V r( ), with ρ=r z z( , , )e e im

and ρ = +x y2 2 , is given by

Σ= Δ + + −V r E z z V r( ) ( ) ( ) ( ), (6)e e e e e im

where ΔE z( )e e is the heterostructure band edge confinement, Σ z( )e e

is the self-energy potential and −V r( )e im is the direct electron–im-
purity Coulomb interaction. The last term includes direct electron–
impurity Coulomb interaction and the interactions between elec-
tron and impurity image charges. This contribution to the total
potential was deduced from solutions of the Poisson equation in
2D quantum structures, as shown in Eqs. (A21)–(A25) of Ref. [24].
Fig. 1 shows each potential given by Eq. (6), for a 5 nm QW: Fig. 1
(a) shows the potential due to band edges confinement ΔE z( )e e (red
dashed line) and the self-energy potential Σ z( )e e (black solid line),
which is attractive (repulsive) for charge on the low (high)
dielectric constant side ε ε<( )GaN HfO2

. The attractive potential on
the well region produce cusps that appears near the edges of the
interface transition layers, shown in the total potential depicted in
Fig. 1(b). For the purpose of our analyses, we plot in Fig. 1(c) and
(d) the potential −V r( )e im , due to direct electron–impurity Coulomb
interaction, and the total potential V r( ) in a three-dimensional
space, respectively.

The eigenstates of the Hamiltonian are calculated by using a
propagation scheme in the imaginary time domain. [22] Any wave
function can be written as a linear combination of the eigenstates
of a Hamiltonian, since it forms a complete orthogonal basis:

∑Ψ φ= | 〉
=

∞
−a e ,

(7)
t

n
n

iE t
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/n

where φn and En are the eigenfunction and eigenenergy of the nth
eigenstate, respectively. Using τ = it ,
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After several imaginary-time steps of propagation τ → ∞( ), the
term of the ground state, φ| 〉τ−e aE ?/

0 0
0 , becomes strongly dominant

over the terms of the sum, since − >E E 0n 0 for >n 0. Therefore,
starting with any wave function, this function should converge to
the ground state of the system as τ increases. We can consider as a
very long time those in which τ ≫ −E E?/( )n 0 . The excited states
are obtained adding to the algorithm the Gram-Schmidt ortho-
normalization method which will assure orthonormality between
all states in each time step.

2.2. Self-energy potential

In order to calculate the effects of the self-energy potential
Σ z( )e e , shown in Fig. 1(a) (black solid line), on the electron energy
we use the method based on image charges. The electrostatic
potential due to a charge Q located at =r z(0, 0, )0 , in a medium
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where the dielectric constant ε z( ) depends on the position is given
by

ε ϕ δ∇· ∇ = − −z r Q r r[ ( ) ( )] ( ). (9)0

The solution in cylindrical coordinates is independent of the
azimuth angle (see detail in References [15,13]). In this case, we
can write ϕ r( ) in the general series as

∫ϕ =
∞

r qJ qR A z dq( ) ( ) ( ) , (10)q
0 0

where J qR( )0 is the Bessel function of the zeroth order, A z( )q is a
function determined by the boundary conditions of ϕ r( ) at the
interfaces. The solution for the image self-energy potential Σ z( )e e is

⎡
⎣⎢

⎤
⎦⎥∫Σ = −

∞
z

Q
q A z A z dq( )

2
( ) ( ) ,

(11)e e q q
0

0
0

0

where A z( )q
0

0 is solution of Eq. (10) if ε is z independent. Without
loss of generality, we shall here consider QWs with abrupt inter-
face. The self-energy potential Σ z( )e e diverges at the interface

= ±z L/2 and we employ a numerical grid such that the coordinate
in = ±z L/2 does not sit at a grid point in order to avoid the
divergence problem. The major results for Σ z( )e e can be seen in the
Reference [13] and will not be repeat here.
Fig. 2. (Color online) Waves functions projection in the yz( ) plane for the ground
state, first and second excited states. In (a) the impurity is located in =z 0 nmim and
in (b) the impurity is =z 5 nmim far from the center of the QW. The z-projection of
the total potential V(z), in eV, are depicted for QWs with width of L¼5 nm.
3. Results and discussion

As in the case of a model structure, QWs are formed by a zinc
blende GaN layer ranging in the region | | ≤z a between two HfO2

layers in the region | | ≥z a. Between these materials, we consider
the existence of abrupt interfaces at a position along the z axis. The
GaN electron effective mass were taken from experiments

=⁎m( 0.19)e [19], and for simplicity, we have considered the elec-
tron effective mass invariable along z. Although photoemission
spectroscopy experiments demonstrated that Δ =E 2.1 eVe for
wurtzite GaN/HfO2 interfaces [25], the absence of this information
for the zinc blende heterojunction leads us to estimate these
quantities through the simple electron affinity model [26,27], for
which we obtain Δ =E 0.9 eVe . As shown in Fig. 1, the quantum
well has mirror symmetry from the origin in the z direction, at
z¼0, and the reference of the total potential V z( ) in Eq. (6) is taken
with respect to the zero level of the potential ΔE z( )e , as shown in
Fig. 1(a).

The impurity can be placed at any position along z direction,
and two particular positions are shown in Fig. 2. Fig. 2(a) depicted
the total potential V(z) projected along z direction, where the
impurity is located at the center of the QW in

=x y z( , , ) (0.0, 0.0, 0.0)im im im nm. Fig. 2(b) shows the total potential
V(z) with the impurity located at the interface in

=x y z( , , ) (0.0, 0.0, 2.5) nmim im im . These figures also display the
energy and the projection of the electron wave function in the (y,z)
plane, for ground state ψ y z( , )0 , first ψ y z( , )1 and second ψ y z( , )2
excited states, confined in a 5 nm QW. For example, when the
impurity is located in the center of the QW the ground state en-
ergy is about 8.71 meV upward of potential energy reference, and
goes up to 25.40 meV when the impurity is placed at the interface
of the QW. Noteworthy the potential energy V(z) is attractive in
the well region due to both electron–impurity interaction and
attractive behavior of the image self-energy. This potential move
the electron to the center of the QW and the wave function is
concentrated in that region, as depicted in Fig. 2(a). When the
impurity is located at the interface, for a 5 nm QW, the electron is
pushed towards to the right interface, as shown by the ground
state ψ y z( , )0 and first excited state ψ y z( , )1 wave function. Inter-
estingly, the second excited state ψ y z( , )2 is weakly attracted by the
impurity.
Fig. 3(a) and (b) illustrates the electron energy as function of
the impurity position along z axis, in narrow (L¼5 nm) and wide
(L¼10 nm) QWs, respectively, for the ground state energy (solid
lines), first (dashed lines) and second (dotted lines) excited states.
Our result shows that the ground state energy increases asymp-
totically until the point where it reaches values with less pro-
nounced variations from ≈z 2 nmim in narrow QW and from

≈z 5 nmim in wide QW. For >z 2 nmim in narrow QW and
>z 5 nmim in wide QW the ground state energy is invariant with

zim position, which indicates that the effect of the impurity po-
tential is small when the impurity is located in the region of the
barrier. Excited states are, on the other hand, weakly affected by
the impurity position.

The nth electron–impurity binding energy level is calculated,
with appropriate image charge contribution taken into con-
sideration, by the difference

= ≠ − =− −E E V E V( 0) ( 0), (12)n b n e im n e im,

where the term ≠−E V( 0)n e im means the n-th electron energy level
calculated considering ≠−V 0e im and =−E V( 0)n e im is the n-th elec-
tron energy level calculated considering =−V 0e im , in Eq. (4). The
absolute value of the electron–impurity binding energy, as func-
tion of the impurity position, is depicted in Fig. 3(c) and (d) for
narrow (L¼5 nm) and wide (L¼10 nm) QWs, respectively. The



Fig. 3. (Color online) Left panels: Electron energy for ground state (black solid line),
first (blue dashed line) and second (red doted line) excited state in QW for
(a) narrow L¼5 nm QW width and (b) wide L¼10 nm HfO2/GaN QW width. Right
panels: Electron–impurity binding energy for ground state (black solid line), first
(blue dashed line) and second (red dotted line) excited state energy as function of
impurity position for a (c) narrow (L¼5 nm) QW and (d) wide L¼10 nm HfO2/GaN
QW. The dark yellow line-sphere depict the electron energy (left) and electron–
impurity binding energy (right) in narrow (top) and wide (bottom) AlN/GaN QW,
and the green dash-dot line shows the effect of the image charges in GaN/HfO2 QW.
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curves are shown for the ground state (black solid line), first exited
state (blue dashed line) and second exited state (red dotted line).
As seen, the binding energy changes with impurity position in the
QW structure. The maximum ground state electron–impurity
binding energy value occurs in the center of the QW, for

=z 0 nmim and decreases when the impurity moves towards the
interface (in both cases L¼5 nm and L¼10 nm) of the well region.
For impurity at the interface region, the electron is weakly bound
and the binding energy is about 5 meV, for the zim values
investigated in this work. Excited states are always weakly bound
to impurities, independent of the zim position.

In order to help us to understand the role of the large dielectric
constant in the barrier region we compare the results for
GaN/HfO2 with those of a more typical GaN/AlN system, where we
have ε ε ε= = =/ 9.5/8.5 1.12r GaN AlN . Fig. 3 shows in dark yellow
line-sphere the electron energy and electron–impurity binding
Fig. 4. (Color online) Schematic diagram of different interactions between electron and
charges for GaN/AlN (a)–(c) and in GaN/HfO2 (b)–(d) QWs. In (a)–(b) the impurity is loca
energy in narrow and wide AlN/GaN QWs. Different from
GaN/HfO2 ε <( 1)r in a GaN/AlN ε >( 1)r quantum well the electron
fell a repulsive potential in the well region due to the dielectric
mismatch. To elucidate the results presented in Fig. 3(a) and
(b) we show in Fig. 4 a schematic diagram of different interactions
between electron, impurity and image charges for GaN/AlN (a)–
(c) and GaN/HfO2 (b)–(d) QWs. For the impurity at the well region,
this picture clearly shows that the coulomb potential of impurity
and image charges is more attractive in GaN/AlN QW compared to
that in GaN/HfO2 QW. For the impurity located at barrier region
the coulomb potential becomes more attractive in GaN/HfO2. This
explains why the electron energy is smaller (larger) at the GaN/
AlN system when the impurity is located in the well (barrier) re-
gion, as shown in Fig. 3(a) and (b). Without dielectric mismatch, or
even for ε > 1r , the confinement energy is always positive since the
reference of confinement potential V(z) is always either zero or
larger. The energy =−E V( 0)n e im shown in Eq. (12) is bigger in GaN/
AlN than that in GaN/HfO2, giving rise to a difference in the
binding energy as it is shown in Fig. 3(c) and (d). Aside from this
difference this energy is essentially due to the band offset and the
self-energy potential, as it is shown in Fig. 1(a). Further more, as
the impurity position zim increase to the barrier region, the sta-
tionary states inside the well tends to discrete states analogous to
the case of a quantum well without impurity, as we can see in
Fig. 3(a) and (b) for >z 5 nmim . In the binding energy En b, both
contribution band offset and self-energy potentials are not taken
into account and the states collapse near to =z 10 nmim , as shown
in Fig. 3(c) and (d).

To clarify the role played by the high dielectric mismatch at the
interfaces we add in the Fig. 3(a) and (b), in dash-dot green lines
the difference in the electron energy taken into account image
charges and does not taken into account the image charges con-
tributions for a GaN/HfO2 quantum well. This results show es-
sentially the contribution due to image self-energy (interaction
between electron and its image charges) as well as the interactions
among electron and impurity image charges. As the impurity po-
sition increase this difference increase asymptotically until reach
the maximum value around the interface position and decrease
toward negative values in narrow quantum wells due to the at-
tractive character of the self-energy in systems with ε < 1r , as it
can see on the References [12] and [13].
their image charges, electron and impurity as well as electron and impurity image
ted in the well region while in (c)–(d) the impurity is located in the barrier region.



Fig. 5. (Color online) Electron center-of-mass as function of the impurity position
(zim) for (a) narrow (L¼5 nm) and (b) wide (L¼10 nm) QWs. The ground state, first
and second excited states are represented by black solid, blue dashed and red
dotted lines, respectively. The gray line-sphere depict the standard deviation in
position sx for narrow and wide QWs.

Fig. 6. (Color online) Stark shift of the ground state energy (solid lines), first excited
state energy (dashed lines) and second excited state energy in (a) narrow (5 nm)
and (b) wide (10 nm) QWs.
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To further elucidate here, the expectation value of the electron
position ze , along of z axis, is plotted as function of the impurity
position zim, for narrow (L¼5 nm) and wide (L¼10 nm) QWs in
Fig. 5(a) and (b), respectively. For wells with L¼5 nm (L¼10 nm),
the ze of the ground state (solid lines) has maximum displace-
ment around 0.12 nm (1.0 nm) when the impurity is located in

= =z z1 nm ( 3 nm)im im . Moving the impurity towards the barrier
region, ze tends to return to the QW center. In this case ze of the
excited states are also weakly affected by the impurity position.
We also present in the Fig. 5 in gray line-sphere the standard
deviation in the position, namely the square root of the variance

σ = −z zx
2 2 . This quantity illustrate better the transition

from strong binding to weak binding as zin goes into the barrier,
illustrating the big variance at the interface position.

Finally, from practical point of view, it is important to in-
vestigate the effects of external electric fields on the electronic
structure of GaN/HfO2 QWs. In Fig. 6, we show the stark shift
Δ = ≠ − =E E F E F( 0) ( 0)e e e of the three first electron energy states,
for (a) narrow and (b) wide QWs. The electron energy ≠E F( 0)e is
calculated by considering an electric field F, pointing along the z
direction, by including the term eFz in Eq. (6). Here, it is important
to notice that the shift on the electron energy ΔEe can be under-
estimated by several meV with the applied electric field, i.e.,
≃6 meV for narrow QWs and ≃50 meV for wide QWs.

4. Conclusions

In conclusion, we have studied impurity state with image
charges effects in GaN/HfO2 quantum wells. Our results show that
the electron–impurity binding energy is highest when the im-
purity is located at the center of the quantum well and decreases
when the impurity moves towards the interface. When the im-
purity is located on the barrier region the binding energy has a
smaller intensity. Moreover, when a electric field is applied on z
direction the electron energy can be shifted by about 50 meV in
wide quantum wells. These results are lacking experimental con-
firmation, and we expect that our predictions induce the realiza-
tion of such experiments.
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