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We theoretically investigate the electronic transport properties of two closely spaced L-shaped

semiconductor quantum wires, for different configurations of the output channel widths as well as

the distance between the wires. Within the effective-mass approximation, we solve the time-

dependent Schr€odinger equation using the split-operator technique that allows us to calculate the

transmission probability, the total probability current, the conductance, and the wave function scat-

tering between the energy subbands. We determine the maximum distance between the quantum

wires below which a relevant non-zero transmission is still found. The transmission probability and

the conductance show a strong dependence on the width of the output channel for small distances

between the wires. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934646]

I. INTRODUCTION

Advances in the fabrication and nanostructuring of

semiconductor compounds opens up opportunities for com-

bination of different shapes of devices on a nanometric

scale.1–4 There are numerous experimental methods and

techniques of fabricating these semiconductor nanostruc-

tures, such as self-organized growth in a MBE chamber,5–7

split-gate technique used to fabricate narrow quantum chan-

nels for electrons,8 and AFM lithography, which can be used

to create different nanostructures.9,10 On a nanometric scale,

transport properties of one-dimensional structures are of

great interest and a large number of novel phenomena have

been predicted and observed in recent years.11,12 Here, we

shall mention, for example, investigations on the transport

properties through confined states in a 1D wire were per-

formed by Auslaender et al.13 Tserkovnyak et al.14 gave a

detailed experimental investigation and theoretical explana-

tion of a set of interference patterns in the nonlinear tunnel-

ing conductance between two parallel wires that were first

reported by Auslaender in 2002.15

From a theoretical point of view, the attempt to model

increasingly smaller semiconductor systems that is driven by

the miniaturization of technological devices has led to more

systematic studies with the aim to describe in more detail the

different physical effects, such as tunneling in transistor gate

oxides16,17 and energy quantization in nanometer scale

MOSFETs.18,19 In addition, different systems used to calcu-

late the scattering probabilities per unit of time under the

effect of perturbative potentials have been proposed and

investigated. Some cases of interest here are those when add-

ing an extra path in the system,20 an effective potential

simulating a Scanning Gate Microscopy tip21,22 as well as

the effect of a smooth potential in path’s connections.23

In this work, we investigate the wave packet scattering

in two L-shaped quantum wires (QWs) separated by a dis-

tance W2, see Fig. 1. The aim is to find the minimum separa-

tion distance between two bent wires with acceptable values

for tunneling. For this purpose, we inject a Gaussian wave

packet in the left-lead and calculate the transmission into the

bottom lead and the tunnelling into the second wire. Our the-

oretical model is based on the solution of the time dependent

Schr€odinger equation within the effective mass approach

using the split-operator technique.23,25 We consider different

values of the wave packet kinetic energy and W2 distances

between the quantum wires as well as different width values

for the second wire L. We then analyse how the conductivity

depends on these parameters (W2 and L).

This remainder of this organized as follows: In Sec. II,

we describe our theoretical model and numerical technique

to solve the time-dependent Schr€odinger equation. In Sec.

III, we discuss the transport properties of the system and we

present our conclusions in Sec. IV.

II. THEORETICAL MODEL

Our model describes electrons in the (x, y) plane moving

from left to right in a region with a L-shaped wire (see left

side of Fig. 1). The effective-mass approximation was con-

sidered and all electrons are confined by a step like potential,

i.e., V (x,y)¼ 0 inside the QW and Vðx; yÞ ¼ V0 otherwise.

Abrupt interfaces between the confinement region and the

potential barrier are assumed. Similarly, in the right side of

our set up, another L-shaped QW is considered. The left QW

is assumed to have fixed width W1¼ 10 nm, whereas for

right QW, three different widths L (¼W1/2, W1, and 2W1).

The smooth edges of the QWs are drawn by circles of radius

RW ¼ W1=2 and RL ¼ L=2 for the left and right wires,

respectively, in order to approach more realistic systems.
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The left side is separated from the right by a distance W2

which ranges from 0 nm to 4.8 nm in this work. We assume

that the electron is always in the conduction band, and

inelastic scattering events, or conduction-to-valence band

transitions, are negligible, which is a reasonable approxima-

tion when dealing with low-temperature systems.

In the transverse cross section, the QW behaves as a

quasi-one-dimensional channel where an electron confined

in this region has a subband energy

En kxð Þ ¼ E
yð Þ

n þ
�h2k2

x

2me
; (1)

where EðyÞn are the y components of the eigenvalues which

were obtained numerically for a potential of V0¼ 600 meV.

These eigenvalues are lower than the corresponding eigenval-

ues calculated for an infinite potential, EðyÞn ¼ n2p2�h2=2meW2
1 ,

although this analytical expression can be used for an estimate

of energies in a quantum well of W1 width. A combination of

a Gaussian function with a plane wave is injected from the

left to the right along the x direction, so that at t¼ 0, the wave

packet is given by

W x; yð Þ ¼ exp ik0x�
x� x0ð Þ2

2r2
x

" #
/0 yð Þ: (2)

Here, k0 ¼
ffiffiffiffiffiffiffiffiffiffi
2mee
p

=�h is a wave vector corresponding to the

kinetic energy e, and /0ðyÞ is the ground state wave function

of the quantum well in the y direction. The width of the

wave packet in the x direction is fixed by rx. The time evolu-

tion of the wave packet is studied with the split-operator

technique, which allows to separate the kinetic terms for

each direction. This separation is important for systems with

many degrees of freedom. We follow the approach of Refs.

23–26, whose details will not be reproduced here. Time evo-

lution of wave packets describing conduction band electrons

has been widely used as an important tool for understanding

transport properties of low-dimensional systems,27 and has

proven to successfully reproduce experimental results fairly

well.28 Connection between time evolution methods and the

Greens functions formalism can be seen in more detail, e.g.,

in Ref. 29.

The (x, y)-plane is discretized by a squared grid Dx
¼ Dy ¼ 0:4 nm, and the finite difference scheme is used to

solve the derivatives in the kinetic energy terms of the

Hamiltonian. To avoid spurious reflection when the wave

packet reaches the edges of our set up, we applied an imagi-

nary potential, as discussed in Ref. 23 and suggested by

Manolopoulos.31 The current of the system is given by

J ¼ � i�h

2me
W�rW�WrW�ð Þ: (3)

The transmission probabilities are calculated in three

different positions at vertical (T1 and T3) and horizontal (T2)

axes, as shown in Fig. 1. For the horizontal axis, we fixed a

point xr, localized in the right side and the transmission T2 is

calculated as

T ¼
ð1
0

dt

ð1
�1

dyJxðxr; y; tÞ: (4)

For vertical axis, we fixed a point yB in the bottom wire and

a point yT in the top wire and calculated the transmission T1

and T3 through Eq. (4), changing Jxðxr; y; tÞ for Jyðx; yT ; tÞ
and Jyðx; yB; tÞ, respectively, and the above spatial integral is

now evaluated along x-direction. The reflection probability

R is calculated by fixing a point xl in the left side and evalu-

ating the integrals in dt and dy. More precisely,

R ¼ �
ð1
0

dt

ð1
�1

dyJxðxL; y; tÞ; (5)

where Jx is the x component of the probability current.

In order to investigate the scattering of an electron into

different subbands of the wires, we project the wave function

on the j-th eigenstate of the quantum well at a fixed point xi,

using the relation

Pjðxi; tÞ ¼ jhWj/jij2 ¼
����
ðþ1
�1

dyWðxi; y; tÞ/jðyÞ
����
2

: (6)

Equation (6) is the probability density of finding an electron

in the j-th subband at position xi per length in the x direction.

Moreover, the contribution of each subband state to the prob-

ability current can be calculated by

j jð Þ
x x; tð Þ ¼

�h

2mei
�P
�
j

@

@x
�Pj � �Pj

@

@x
�P
�
j

� �
; (7)

where �Pjðx; tÞ ¼ h/jjWi gives the time-dependent wave

function within the j-th subband. Notice that since �Pjðx; tÞ is

not normalized, its value can be larger than one. Finally, the

time-dependent probability current at xi is given by

FIG. 1. Potential profile scheme for the QWs studied in this work. The two

QWs are separated from each other by a distance W2, ranging from 0 to

4.8 nm. The smooth connections between vertical and horizontal wire are

described by circles of radius RW ¼ W1=2 and RL ¼ L=2.
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Jtðxi; tÞ ¼
ðþ1
�1

Jxðxi; y; tÞdy: (8)

Solution of Eqs. (6)–(8) forms the basis to understand

the conductivity and the trajectory of the wave packet

through the wires.

III. RESULTS AND DISCUSSION

For all cases considered in this work, we consider mate-

rial parameters for InGaAs (wire) and GaAs (barrier mate-

rial), in which the conduction band of the InGaAs/GaAs

heterostructure has a band-offset of 600 meV. Moreover, for

InGaAs, the electron effective mass is me¼ 0.041 m0.30 The

wave packets are injected from left to right at t¼ 0, in the

lowest subband /n¼1ðyÞ. Three different values of the kinetic

energy of the wave packets are considered: e1 ¼ 70 meV,

e2 ¼ 140 meV, and e3 ¼ 200 meV.

Transmission and reflection probabilities obtained with

our method are presented in Figs. 2 and 3 as function of the

distance W2 for L¼W1 and L ¼ 2W1, respectively. The trans-

mission probabilities are calculated on the left-bottom wire T1

(green, dashed dotted line), right-output wire T2 (black, solid

line), and right-top wire T3 (red, dashed line). The reflection R
(blue, dashed dotted dotted line) is calculated on the input left-

wire. We checked numerically that the sum Rþ
P

Ti ¼ 1 is

satisfied up to a maximum error of 0.1%. For a wave packet

with kinetic energy e1 (Figs. 2(a) and 3(a)), the transmission

coefficient T2 decreases faster than the one with kinetic energy

e3 (Figs. 2(c) and 3(c)), i.e., the tunnelling through the barrier

W2 is in general larger for higher kinetic energy. Furthermore,

the transmission T2 decreases towards zero with increasing

width W2, and as a consequence, the transmission T1 and

reflection R increase such that T1 þ R ’ 1 for wide W2. The

tunnelling T3 towards the top-right side is less than 10%, but

nonzero even for high kinetic energy of the wave packet and

for different W2 distance. This behavior is shown in Figs. 2

and 3 by red dashed lines for L¼W1 and L ¼ 2W1, respec-

tively, and occurs because the quantum wire shape spreads the

wave function around the position x¼ 0, specially for

W2 ! 0, where the transmission is about 70% through T1 and

the other 30% is reflected R or tunnel through T2 and T3, as

shown in Fig. 3(c). Tunnelling of wave functions starting in

the first excited subband of the input lead is demonstrated to

be much lower, though, as shown in Figs. 2(d) and 3(d), where

T2 reaches a maximum value of �10%, whereas most of the

wave packet (�75% for small W2 in both cases) goes through

the input (left) wire towards the left-bottom lead 1, as a small

part of it (�10% for small W2 in both cases) is reflected back

(T3 gives a small contribution �5%, as usual). The transmis-

sion probability T2 in Figs. 2 and 3 is perfectly fitted by an ex-

ponential function f ðW2Þ ¼ A0 exp ð�W2=sÞ � A1, where s,

A0, and A1 are fitting parameters given in Table I.

Let us now discuss the contribution of each subband of

the output lead to its overall current. In order to have a better

understanding of this problem, we display in Fig. 4(a) the

eigenenergies of the output lead as a function of its width.

The average wave vector ki
x of the wave packet is schemati-

cally shown in Fig. 4(b) for L ¼ W1=2, in Fig. 4(c) for

L¼W1, and in Fig. 4(d) for L ¼ 2W1. Here, the highest ki-

netic energy was chosen to cover the first three subbands in

the output lead, where the bottom of the subband is found to

be around e3, for an output width of L ¼ 2W1. This kinetic

energy allows us to calculate the influence of the subbands

on the scattering of the wave packet. The number of kx val-

ues allowed for each kinetic energy e, at different subbands,

depends on the width L: for instance, in the case illustrated

in Fig. 4(b), when L ¼ W1=2, only k
ð1Þ
3 is allowed. However,

FIG. 2. (a)–(c) Wave packet transmis-

sion (T) and reflection (R) probabilities

as a function of W2 for a well width

L¼W1. The transmission probabilities

are calculated in three different points

of the QWs: bottom T1 (green, dashed

dotted line), top T3 (red, dashed line),

right T2 (black, solid line), while the

reflection R (blue, dashed dotted dotted

line) is calculated at the left side. The

wave packet energies are (a) e1, (b) e2,

and (c) e3 (propagated on ground

state), and (d) e3 (propagated on first

excited state).
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this kinetic energy may take values k
ð1Þ
3 ; k

ð2Þ
3 , and k

ð3Þ
3 for e3

with L ¼ 2W1 (see Fig. 4(d)). As for our Gaussian wave

packet, the initial wave function is a distribution of kx’s

around kðiÞx that yields an energy distribution DE, as illus-

trated in Fig. 4(d). More details regarding the initial wave

package width in kx-space can be obtained by Fourier trans-

form and this is explained in detail in Ref. 23. In the case

proposed here, where the wave function is also Gaussian in

reciprocal space, it is possible to determine the energy distri-

bution of the wave packet as DE ¼ �h2k0Dk=me, where Dk
¼ 2

ffiffiffiffiffiffiffiffiffi
2ln2
p

=rx is the full width at half maximum (FWHM).23

Figures 5(a) and 5(b) show snapshots of the wave func-

tion with kinetic energy e2, calculated at t¼ 160 fs for

W2¼ 1.2 nm, as indicated by the vertical dashed-gray lines

in Fig. 2(b) (for L¼W1) and in Fig. 3(b) (for L ¼ 2W1),

respectively. It is easy to verify that the wavefunction indeed

leaks towards both the horizontal and vertical arms (labelled

as 2 and 3 in Fig. 1, respectively) of the right channel,

FIG. 3. The same as in Fig. 2, but now

for L ¼ 2W1.

TABLE I. Exponential fitting to transmission probabilities T2 shown in

Figs. 2 and 3, for different energies e and widths of the second wire L.

L¼ 10 nm L¼ 20 nm

e A0 s A1 A0 s A1

e1 0.33 11.46 0.01 0.49 9.89 0.01

e2 0.512 15.108 0.035 0.70 13.32 0.03

e3 0.620 15.384 0.038 0.80 14.65 0.04

eð1Þ3 0.103 10.979 0.003 0.09 14.12 0.005

FIG. 4. (a) Bottom energy of the different subbands as function of the quantum well width L. Schematic diagrams that represent the subband energies as func-

tion of the wave vector kx in the x direction are shown for different output wire widths: (b) L¼ 5 nm, (c) L¼ 10 nm, and (d) L¼ 20 nm. The horizontal dashed-

dotted lines represent the average energy of the wave packets e1 and e3.
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leading to the non-zero transmission probabilities T2 and T3.

Moreover, a tail of the energy distribution around e2 ¼ 140

meV has energy higher than the bottom of the second sub-

band of the L¼W1 channel, and the snapshot in Fig. 5(a)

reveals that part of the wave packet is scattered to this band

just by the shoulder of the wires, as inferred by the wiggling

function in the output wires. When the right wire has a larger

width, L ¼ 2W1, all of its subbands are lowered and the tun-

nelled wave packet populates its excited states, as one can

see by the several peaks of the wave function in this wire in

Fig. 5(b).

In order to clarify the role of the well width L in the out-

put lead on the transmission probabilities, in Fig. 6, we dis-

play the transmission coefficient on the right side (T2þT3)

as function of L for two different wave packet kinetic ener-

gies e1 (a) and e3 (b). Three different W2 distances were con-

sidered, namely, 0 nm (black, solid line), 1.2 nm (red, dashed

line), and 2.4 (blue, dotted line). The transmission increases

with increasing L which is a consequence of the lowering of

the subband energy states in the right side over which the

tunnelled wave function can be distributed. For a lower wave

packet kinetic energy e1, the transmission stays below 20%

for W2 distance above 1.2 nm, and for e3, the transmission

keeps below 40%.

In Fig. 7, we show the projection of the time-dependent

wave packet on the ground (P1), first-excited (P2), and

second-excited state subband (P3) of the right-lead. The pro-

jections are calculated numerically as function of W2 at the

point x¼ 158 nm in the right side for output widths L¼W1

(a) and L ¼ 2W1 (b). The results are shown for wave packet

kinetic energies of e1 (black, solid line), e2 (red, dashed line),

and e3 starting in the ground (blue, dotted line) and first

excited (green, short dotted) subbands. As expected, all pro-

jections decrease towards zero as W2 increases, since the

overall current also exhibits this decreasing behavior. For the

narrower leads in Fig. 5(b), the packets with kinetic energies

e2 and e3 scatter to the first excited state (P2 6¼ 0), while for

energy e1, this projection is almost zero for any W2 value.

The projection for the second excited state (P3 6¼ 0) is only

possible for wave packets with an energy of e3, as shown in

Fig. 4(c), although still with very small values. For quantum

wells with L¼ 2W1, the subbands energies get closer to each

other such that the wave packet scatters to excited states

even for energy e1, Fig. 7(b).

An analysis of the time-dependent current probability for

the wave packet as a function of time is illustrated in Fig. 8.

The wave packet propagates from the left to the right side

with kinetic energy given by e1 (black solid), e2 (red dashed),

e3 in the lowest subband (blue dotted), and e3 in the first

excited subband (green short-dotted). Around y¼ 0 and along

the x-axis, the potential is similar to a simple quantum barrier

with height of 600 meV. Calculated at x¼ 158 nm across the

potential barrier, the time-dependent current probability is a

tunnelling current that can give an estimate about the leakage

current through the barrier. In Fig. 8, we plot the tunnelling

current probabilities for two different W2 distances: (a)

W2¼ 0 nm and (b) 2.4 nm. For each W2 distance, we consider

three different output widths L, from top to bottom: L ¼
W1=2 in the first row, L¼W1 in the second, and L ¼ 2W1 in

the third row. Clearly, the peak in the probability current is

lower at low energies, and it also decreases (increases) with

increasing distance (width) W2 (L). Particularly, in the case of

L¼W1, Fig. 8 emphasizes the oscillatory behaviour of the

probability current for the two distances W2 used in our calcu-

lations. This probability current oscillation is due to wave

function scattering in the central region of the wires, as illus-

trated in Figs. 2 and 3(d). It is easy to see that the current peak

occurs faster as the energy increases, as a consequence of the

higher Fermi velocity in this case. Although smaller than

the other peaks, it is possible to observe that the peak for the

wave packet with e3 in the first excited subband (green short-

dotted) always occurs latter than that for the ground state

FIG. 5. Snapshot of the wave function

at t¼ 160 fs for (a) L¼W1 and (b)

L ¼ 2W1. The distance between wires

is assumed W2¼ 1.2 nm, as depicted

by the vertical dashed line in Figs. 2

and 3(b), and the wave packet energy

is e2 in both cases.

FIG. 6. Transmission coefficient (T2þT3) as function of the well width L,

for wave packet energies (a) e1 and (b) e3. Three W2 distances were consid-

ered: 0 nm (black, solid line), 1.2 nm (red, dashed line), and 2.4 nm (blue,

dotted line).
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FIG. 7. Projection of the wave function

on the ground state P1, first-excited P2,

and second-excited subbands P3 inte-

grated in time, calculated at

x¼ 158 nm in the right-lead, for output

wire widths L¼W1 (a) and L ¼ 2W1

(b), as a function of the distance W2.

FIG. 8. Total time-dependent probabil-

ity current for wave packet energies e1

(black, solid), e2 (red, dashed), e3

propagated on the ground state (blue,

dotted), and e3 propagated on the first

excited state (green, short-dotted).

Results for different distances W2 are

plotted in columns (a), for W2¼ 0 nm,

and (b), for W2¼ 2.4 nm. The output

width L is assumed to be L ¼ W1=2 in

the upper row, L¼W1 in the middle

row, and L ¼ 2W1 in the bottom row.
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subband case (blue dotted), since in the former case, the mo-

mentum is lower, leading to a lower propagation velocity (see

Fig. 5(c)). Besides, increasing L for fixed W2 slightly shifts

the peaks to lower times, which is due to the fact that larger

widths lead to lower subband energies and consequently,

higher momentum for fixed wave packet energy.

Finally, from a practical point of view, it is important to

investigate the behaviour of the conductance for different val-

ues of the kinetic energy, W2 distance, and output width L.

With this in mind, we express the conductance as a particular

case of the multiband Landauer formalism32,33

Gl eð Þ ¼ 2e2

h

X
n

T
nð Þ

l eð Þ; (9)

where the output lead index l is 1, 2, or 3 for conductance

calculated with T1, T2, and T3, respectively, and the index n
accounts for different occupied subbands in the input lead.

The quantum conductance (G0 ¼ 2e2=h) is used here as unit

of electrical conductance, and the transmission coefficients

T
ðnÞ
ðxt;ytÞðeÞ are calculated by setting the wave packet at the ini-

tial time in a given subband n, with average energy e, and

integrating the probability current at the axis defined by (xt,

yt), as in Eq. (4).

Figure 9 displays the conductance G2 versus the distance

W2 calculated at the right wire (output 2, see Fig. 1) for three

wave packet kinetic energies e1 (solid black), e2 (dashed

red), and e3 (dotted blue). The conductance was computed

by taking into account the transmission probability of the

first three subbands for the T2 coefficient at x¼ 158 nm on

the output lead, with output width L¼W1 in Fig. 9(a) and

L ¼ 2W1 in Fig. 9(b). The conductance depends strongly on

the distance W2. We observe that when the distance W2

increases, the transmission probability decreases, hence

decreasing the conductance in the output region. The wave

packet scattering is larger for the case where L¼W1, result-

ing in a larger reflection probability, as can be seen in Figs. 2

and 3, which explains why G is higher in 9(b), as compared

to Fig. 9(a). Also, the conductance changes with the kinetic

energy of the wave function even for W2¼ 0 nm, as observed

in Fig. 9(a), as a consequence of quantum scattering at the

junction between the wires.

All results presented so far were made for fixed wave

packet average energies e ¼ e1; e2, or e3. It is important to dis-

cuss how these results relate to possible future experiments

aiming to verify the quantum tunnelling effects investigated

here. In fact, at temperature T¼ 0 K, Landauer formula for

conductance is exactly given by Eq. (9), but with transmission

probabilities calculated for a plane wave with energy e. For

non-zero temperature, however, the transmission probability

must be multiplied by the derivative of the Fermi’s energy

distribution and then integrated in energy, so that there will be

a temperature dependent range of energies around the Fermi

level that effectively contribute to the overall conduction.

Notice that in our calculations, since we do not consider plane

waves, results are never for a single e and, consequently, they

do not describe a zero-temperature situation. Actually, the

Gaussian wave packet considered here yields a Gaussian dis-

tribution of momenta or, equivalently, a combination of plane

waves with different energies. Therefore, in a sense, our

results for conductance are closely related to those for non-

zero temperature, where the width of the Gaussian wave

packet in reciprocal space is related to the width of the energy

distribution and, consequently, plays the role of the tempera-

ture. Finding the exact relation between temperature and the

wave packet width is, however, a difficult task, which is left

for future works, whereas here we restrict ourselves to a more

qualitative discussion of this matter.

Having stated that we now use our method to calculate

the steps in conductance as a function of the electron energy,

as expected for a quantum channel, such as the one consid-

ered here. These steps cannot be sharp, since we are dealing

with a non-zero temperature simulation. This is shown in

Fig. 10 for three different values of the W2 distance: (a)

0 nm, (b) 1.2 nm, and (c) 2.4 nm. The conductance is calcu-

lated between the input lead and the three possible output

leads, namely, with G1, G2, and G3, showed in Fig. 10 by

arrows. Well widths are L¼ 5 nm (red dotted), 10 nm (blue

dashed), and 20 nm (black solid). Conductance to the upper

lead G3 is always close to zero and reaches, at most, �0:15

for W2 ¼ 0, as expected from the low transmission probabil-

ities for this lead observed in previous results in Figs. 2

and 3. Notice that for the widest L width, three subbands are

involved in the output lead for a wave packet kinetic energy

around e3, as shown in Fig. 4(d). On the other hand, for nar-

row widths, one subband is involved for L¼ 5 nm, Fig. 4(b),

and two subbands are involved for L¼ 10 nm, Fig. 4(c). For

this reason, the conductances G2 in Figs. 10(a) and 10(b) are

clearly spaced for different values of L. Since G2 is directly

related to the current leak, its increase is responsible for

reducing the conductance through the original channel G1.

For lower values of energy e, conductance G1 is reduced as

the energy increases, due to the increasing current leakage

G2. This effect becomes weaker either as the distance

between wires increases or as the second wire width L is

made narrower, thus hindering the quantum tunnelling

between wires. Furthermore, the differences between con-

ductances G1 for different values of L become negligible as

the W2 distance becomes too large, see Fig. 10(c). The quan-

tized steps of conductance are also observed in the leakage

current G2, but much lower than those for G1, which suggests

FIG. 9. Conductance G2 through the output quantum wire as a function of

the distance W2. Wavepacket energy is e1 (black, solid lines), e2 (red, dashed

lines), and e3 (blue, dotted lines) for quantum wire widths L (a) 10 nm and

(b) 20 nm.
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that states in the first excited subband of the input lead have

lower contribution for the leakage current as compared to

those coming from the first subband.

IV. CONCLUSIONS

We have presented a theoretical investigation of the

electron transmission between two bent quantum wires that

is based on the propagation of a Gaussian wave packet. The

two L-shaped semiconductor quantum wires are separated

by a distance W2. We showed how a change in the distance

between the two QWs W2 affects the tunneling probability

and the time-dependent probability current for different val-

ues of kinetic energy wave packet. The wave packet scat-

tered by the potential is reflected and transmitted through the

barrier. The tunneling current provides an estimate of the

leakage current in the system, which becomes larger as W2 is

reduced. It is of fundamental and practical importance to

control these undesired leakage currents in miniaturized

electronic devices and circuits, thus, we believe the results

presented here might contribute to help future experimental

investigations of carrier transport in low dimensional circuits

and their future applications in nanotechnology.
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